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Note

Canonical Transformation Invariance
and Linear Multistep Formula
for Integration of Hamiltonian Systems

It is shown that, if a linear multistep formula applied to numerical integration of
hamiltonian systems is also to be a canonical transformation, it must essentially be a two-term
formula. ¢ 1985 Academic Press. Inc.

In numerical integration of dynamical systems it is useful to confirm various
invariance properties. Although it is not always necessary that an integration for-
mula itself has invariance properties, it will be interesting to find conditions that the
formula must satisfy in order to have these properties. In a recent note [1] we
found conditions under which a linear multistep formula is invariant under time
reversal transformation. In this note we shall examine under what conditions a
linear multistep formula, when applied to integration of hamiltonian systems, is to
be a canonical transformation.

A hamiltonian system is described by canonical coordinates ¢',.., ¢/ and con-
jugate momenta p',.., p/. It is convenient to regard these variables as a vector
r={}=1{q', p'} in the 2f-dimensional phase space. With a hamiltonian function
H(y)= H(q, p) the equations of motion are written in the form

dy/dt = f(y), (1)
Si)y={r"y)} ={éHjép', —cH/oq'}. (2)

Let a solution of these equations be y(t)= y(¢; . t), Where y,is an initial value of
» at a time 1,. This solution can be regarded as a transformation from y, to y(z). It
is called a canonical transformation if it satisfies the following condition: Let two
infinitesimal variations of y, be dy, and J'v,, and their time developments be dy
and &'y, respectively. Then a normalized skew-symmetric bilinear form made with
dy and o'y
/
[0y 6'y]=}, (6q'8'p'—3dp'd'q")=(3y)"J(d'y) (3)
i=1
must be constant in time. Here the superscript T means the transposition and J is a
2f x 2f matrix J=(_9 ).
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The equations for éy and ¢’y are derived from Eq. (1) as
d(dy)/dt =F dy and d(é'y)/dt=Fd'y,
where F is a 2f x 2f matrix:
¢ *Hjop' oq’ &*H/op' op’
By = (gfHloyY) = . . . ).
o= tarvier) =( AT 4)

Here the superscripts i and j indicate rows and columns, respectively, of four f x f
matrices. Then it can easily be shown that the expression (3) is constant in time,
since

F'J+JF=0. (5)

Now we shall show that if a linear one-step formula applied to a hamiltonian
system is regarded as a transformation, the formula is a canonical transformation.
Let the formula to compute y, ., from y, be written in the form

yn+l__vn:h{ﬂ.fn+l+(1—ﬁ)fn}v (6)

where # is a step size, y, the value of y at t=1¢,+nh, and y,,, has a similar
meaning, f,=f(y,) and f,,,=f(y,,.). and B is a constant with 0 << 1. For
infinitesimal variations we have

5)vn+\_5.yn=h{ﬁFn+l 6}7n+1 +(1 —B) Frz 5}"n}’

where F, is a matrix F given by Eq. (4) with y=y,. From this equation we find
0V, . to the first order of A

5}‘,n+l= [1 +h{ﬁFn+1+(1 _ﬁ) Fn}] 6yn'
Hence,
[0Yss10Vpiil= (5)’n)T[J+ h{ﬂ(F:+ 1J+HIF, )
+ (1= BNFTJ+JF,)}10'y,
=[0y,0'y,].

In the last step Eq. (5) is used. We note that this proof is a discrete version of the
proof for constancy in time of the expression (3).

Next we consider the case of a general linear multistep formula to compute y,, . ,
from y,,..., ¥4+« _1- The formula is written in the form

PE) y,=06(E)f,, (7)

where E is an operator increasing the subscript # by one, p({) = Sk ol (e =1),
and a({)=3X%_, B,C° (Jool + |Bol #0). The convergence condition for formula (7) is
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that it is both consistent and zero-stable (see Henrici [2, Chap. 5] and Lambert
[3]). The consistency means

p(1)=0, (8)
p'(1)y=a(1). 9)

The zero-stability requires that the roots of the polynomial p({) all lie within or on
the unit circle, those one the unit circle being simple. Thus

p'(E)#0  for [ =1 (10)

Now we shall find under what conditions this linear multistep formula is to be a
canonical transformation. From Eq. (7) we get a multistep formula for infinitesimal
variations Jy

From this equation we get dy,, . . to the first order of

5,Vn+k=ZI {_as+h - ﬂk n+k+ﬂ n+s }5.Vn+u

where }°' means summation over s from 0 to k — 1. We assume that transformations
from dy, to éy, . (,.-., from 8y, ., _, to éy,, ., are all canonical transformations.
Then all normalized skew-symmetric bilinear forms for dy,,..., 4y, . ,_, are equal to
each other, and are put equal to I

[0y, 0 yu]l= """ =[0ynsn-16nss_11=1 (11)

Now we calculate [dy,,,9d'y,.«] and put it equal to I. After some algebra we
obtain

(z )z+z S0, (89 VIS Y s

s#s5

- h ZI Z,(a},n+s')T(a3"ﬂan+s_asﬁx'Mn+s') 5’yn+s” (12)

s#ES

where the 2f x 2f matrix M, . is given by

02 H/dq' b’ 0*H/dq' dp’
M, = FT, J= ( H/oq' 0q /0q p)
Y= DVYn+s

0*H/op' 0q’ 0°H/op' op’

Here the superscripts i and j have the same meaning as in Eq. (4). Equation (12)
must hold to every order of A. Also it must hold for any dynamical system. In par-
ticular, for a free particle system the matrix M reduces to M’ =(39), where we
assume the mass of each particle is one. Then, we have
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I= (Z, df) I+ Z’ Z, asas’(6Yn+s)TJ51yn+s',

s#s

Z’ Z, (as'ﬁs - asﬂs’)(éyn +3)TM’ 5’)/',, +5 = 0.

s#s

These equations must hold for any values of dy,,, and &'y, , which satisfy
Eq. (11). Using Lagrange’s method of undetermined multipliers, we obtain

Sa=1t, (13)
oo, =0 for 0<s<s' <k, (14)
oA By=a.B, for 0<s<s <k. (15)

As Eg. (8) means 1+ o, =0, there is at least one a;#0 for s=/ As Eq.(14)
implies a, =0 for s #/, a;,= —1 is the only o, which is not zero. These a,’s satisfy Eq.
(13). Equation (15) implies f,=0 except s=1I Thus the polynomial p({) has only
two, and the polynomial 4({) has at most two terms different from zero:

p(O)={ -1 (16)
a(0)= B L* + B, (17)
and Eq. (9) gives
Bi+Bi=k—1L

Also Eq. (16) satisfies Eq. (10). Hence we get the following theorem.

THEOREM. [If a linear multistep formula Eq. (7) is convergent and is further a
canonical transformation, it must be a two-term formula as Eq. (16) and Eq. (17).

Finally, we shall make three remarks:

First, as for higher-order invariant forms such as the 2f-dimensional volume
element in the phase space, we note that invariance of these forms can be derived
from that of the normalized skew-symmetric bilinear form Eq. (3) (see, for example,
Weyl [4, Chap. 6]).

Second, if the formula Eq. (7) is convergent, is a canonical transformation, and is
further invariant under time reversal transformation, it must be a one-step formula
as given by Eq. (6) (Aizu [1]).

Third, in practical computations a two-term formula may not give highly
accurate results. If a non-invariant formula in current use gives good results to
invariant quantities, we must examine why such a non-invariant formula gives good
results.
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